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Abstract

The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in

a realistic divertor geometry using modi�ed Braginskii equations for plasma vorticity, density (ni),

electron and ion temperature (Te; Ti) and parallel momenta. The BOUT code solves for the plasma


uid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the

region somewhat inside the separatrix and extending into the scrape-o� layer; the private 
ux region

is also included. In this paper, a description is given of the sophisticated physical models, innovative

numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic

fusion energy devices. The BOUT code's unique capabilities and functionality are exempli�ed via

simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

PACS numbers: 52.55.Fa, 52.25.Fi, 52.30.Gz, 52.35.Ra, 52.65.Tt, 52.65.Kj, 52.65.-y
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I. INTRODUCTION

The performance of tokamaks and other toroidal magnetic fusion devices depends crucially

on the dynamics of the boundary region, i.e., the transition region from the hot core plasma

through the separatrix to the material surface of the �rst wall, as shown in Fig. 1. Plasma

turbulence, and the resulting anomalous cross-�eld plasma transport, are physical processes

in the boundary region, a�ecting both core plasma con�nement [e.g. high con�nement mode

(H-mode) and Edge Localized Modes (ELMs)], the density limit, and plasma-wall interac-

tions [1]. The plasma boundary region has a number of physics attributes which make it

quite distinct from the core: relatively low temperature, large radial gradients, and high

neutral-gas and impurity densities, proximity of open and closed 
ux surfaces, presence of

X-point and sheath physics in the Scrape-O�-Layer (SOL). The large radial gradients tend

to drive turbulent 
uctuations which are a larger percentage of background values than in

the core plasma.

Strong boundary turbulence has been observed in nearly all magnetic con�nement devices [2].

There exist many experimental turbulence measurements in the pedestal region and in the

SOL. Common diagnostics include electrostatic probes, re
ectometry, phase contrast imag-

ing (PCI), Beam Emission Spectroscopy (BES), and Gas Pu� Imaging(GPI) [2]. Observed

boundary turbulence has many common features, and a great deal of experimental data has

been obtained over the past 20 years on e.g. 
uctuation levels, spectra, correlation lengths,

and scalings, but until recently this data could not be understood from �rst principles. The

reason is simple. The diagnostics typically are limited either to local measurements in space
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FIG. 1: Schematic views of tokamak and boundary plasma region (magnetic separatrix is red line).

or to particular turbulence quantities with certain working assumptions. Predictive simula-

tion of boundary turbulence from fundamental physics models is therefore an important but

daunting challenge owing to the special properties of the boundary plasma, its importance

to an overall understanding of fusion plasmas, and the vast range of relevant spatial and

temporal scales. A critical task is to demonstrate that simulations are able to reproduce the

phenomena observed in real magnetic con�nement devices. With the recent development of

three dimensional (3D) non-linear codes, such as BOUT, it has become possible to make a

direct computation of boundary turbulence, and validating these codes with experiments has

since begun [3{8]. Using well bench-marked codes at the location of a particular measure-

ment, boundary turbulence simulations are able to validate diagnostic tools and patch the

experimental measurements together, yielding global understanding of boundary turbulence

dynamics, and most importantly leading to scienti�c discoveries.

The BOUT code is a nonlinear initial-value two-
uid electromagnetic turbulence code in

boundary plasmas that spans the separatrix [3, 9]. This 3-dimensional ( ; �; �) code rep-

resents con�guration space via a grid in poloidal magnetic 
ux ( ), poloidal angle (�) and

toroidal angle (�). The geometry can be a circular annulus or that of a diverted tokamak

and so includes boundary conditions for both closed magnetic 
ux surfaces and open �eld

lines. The same set of 
uid moment equations for plasma vorticity, density, ion and electron

temperature and parallel momentum are discretized for both geometries. The equations are

solved via a Method-of-Lines approach and an implicit backward-di�erencing scheme using
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a Newton-Krylov iteration to advance the system in time via a fully implicit Newton-Krylov

solver PVODE [10]. The spatial derivatives are discretized with �nite di�erences. A fourth-

order upwinding algorithm is used for nonlinear convections, and a second-order central

di�erence scheme is used for the rest. Boundary conditions at conducting material surfaces

are implemented on the plasma side of the sheath. The 3D BOUT code is parallelized based

on a domain decomposition model by implementing message passing between multiple pro-

cessors by using the MPI package [11]. In order to investigate boundary turbulence, BOUT

is able to couple to the edge plasma transport code UEDGE [12], and MHD equilibrium

code EFIT [13] and Corsica [14] to get the realistic X-point divertor magnetic geometry and

plasma pro�les.

BOUT contains much of the relevant physics for the edge barrier problem for the experimen-

tally relevant X-point divertor geometry. The calculations were carried out to validate exper-

imental measurements and simultaneously to provide consistent understanding of boundary

turbulent dynamics. Encouraging results have been obtained when using measured plasma

pro�les in current generations of major fusion devices such as DIII-D, C-Mod and NSTX. The

resistive X-point mode has been identi�ed in X-point divertor geometry[3, 15]. Comparison

of the shifted-circle vs. X-point geometry shows the di�erent dominant modes and turbulence


uctuation levels[3]. The poloidal 
uctuation phase velocity shows experimentally observed

structure across the separatrix in many fusion devices[16]. The 
uctuation phase velocity

is larger than E�B velocity. The Quasi-Coherent mode is believed to be responsible for

the high energy con�nement (H-mode), yet acceptably low particle (impurity) con�nement

in the Alcator C-Mod high density plasma regime. The experimentally measured dispersion

and mode stability is in good agreement with the resistive ballooning X-point mode pre-

dicted by the BOUT code[17]. A strong poloidal asymmetry of particle 
ux in the proximity

of the separatrix may explain the paradox of the JET probe measurement of the particle


ux when comparisons of the limiter vs. divertor experiments had been made [16]. BOUT

simulations performed with the measured discharge parameters show a Geodesic-Acoustic

Mode (GAM) oscillation at the experimentally observed frequency [18]. Our L-H transi-

tion with simple sources added shows transitions with resistive X-point modes dominating

L-mode and the levels of turbulence are similar to experimental measurements [16]. Blobs

have also been clearly identi�ed from BOUT runs and analysis of has shed insight on 3D

X-point e�ects associated with increased convective velocity [19, 20]. X-point e�ects can
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isolate blobs in the main SOL from divertor legs [21]. Simulations of C-MOD �nd blob-like

structures with amplitudes and spatial correlation lengths comparable to those observed

experimentally. BOUT simulations also provide evidence of instability and 
uctuations in

divertor legs that is uncorrelated with activity in the main SOL [22]. Simulations of Edge

Localized Modes (ELMs) using the BOUT code �nd the expected peeling-ballooning mode

structure and growth rates in the linear phase, followed by rapid radially outward propaga-

tion of �laments in the nonlinear phase [23]. Simulations of ELMs in DIII-D plasmas �nd a

mode structure similar to that directly observed with fast cameras [23{25]

The BOUT project originally started in late 1990s to simulate boundary turbulence across

the magnetic separatrix. The goal of the BOUT project is the development and deploy-

ment of a user-friendly, state-of-art, nonlinear 
uid turbulence capability for the analysis of

boundary turbulence in a general geometry on a routine basis. Since then, the BOUT code

has been further developed with emphasis on readability of the source code, modularity

in physics models, functionalities and/or macros for di�erential operators, consistency in

higher-order spatial di�erencing, and �nally thorough veri�cations via test problems [26].

The most recent development, BOUT++, is based on a object-oriented approach using lan-

guage C++. The aim of BOUT++ is to automate the common tasks needed for simulation

codes, and to separate the complicated (and error-prone) details such as di�erential geom-

etry, parallel communication, and �le input/output from the user-speci�ed equations to be

solved. Thus the equations being solved are made clear, and can be easily changed with

only minimal knowledge of the inner workings of the code. As far as possible, this allows

the user to concentrate on the physics, rather than worrying about the numerics [27].

A method for obtaining a self-consistent model of edge-plasma turbulence and long-time

edge pro�le evolution has been explored by coupling 2D edge transport code UEDGE and

3D turbulence code BOUT via a relaxed iterative approach where each code is run on its

own characteristic time scale. During each cycle of the iterative procedure, the toroidally

averaged plasma pro�les are evolved to steady state. A fraction of these pro�les is used to

update the pro�les driving 
uctuations in the 3D turbulence code. Likewise, a fractional

update of the turbulent 
uxes is provided to the transport code from the turbulence simu-

lation [28]. The coupled transport/turbulence simulation technique provides a strategy to

achieve physics-based predictions for future device performance.

The remainder of the paper is organized as follows. Section II presets physical models
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for boundary turbulence and a set of BOUT dynamical equations. The magnetic geom-

etry and BOUT �eld-aligned coordinates are described in Sec. III. The spatial numerical

implementations is explained in Sec. IV. The background for understanding an implicit

backward-di�erencing scheme using a Newton-Krylov iteration is presented in Sec. V. The

brief description of BOUT software suite is given in Sec. VI. The sample BOUT simulations

results are illustrated in Sec. VII. Finally, a summary of this paper is presented in Sec. VIII.

II. BOUT DYNAMICAL EQUATIONS

A. BOUT plasma equations

In the boundary plasma, the application of a 
uid model is reasonable in part because of the

low temperature and thus high collisionality along the magnetic �eld. Further, the dominant

modes in our simulations are in the long-wavelength regime, k?�j � 1, so the perpendicu-

lar motion can also be described by a 
uid approach. The small parameters to de�ne the

ordering are: � = 8�(pj + pe)=B
2 � 1, Æj = �j=L? � k?�j � 1, �j = �j=Lk � kk�j � 1,

and k? � kk. Here k? and kk are the components of the 
uctuation wave vector perpen-

dicular and parallel to magnetic �eld, respectively. As usual, pj is pressure, �j = vT i=!cj is

gyroradius, and �j = vT i=�j is the mean-free path with vT i =
p
2Tj=Mj, the thermal speed,

!cj the gyrofrequency, �j the characteristic collision frequency, Tj temperature, Mj mass

for species j(j=i,e). The magnitude of magnetic �eld is denoted by B. For application to

micros-turbulence in tokamak edge transport barriers, an additional ordering Æv � v=vth;i

is introduced: the ratio of plasma species 
ow velocities to ion thermal velocity. The short

mean-free path description of magnetized plasma as originally formulated by Braginsikii

assumes a MHD ordering Æv ' 1 [29], while Mikhailovskii and Tsypin �rst realized [30] and

Simakov and Catto correctly derived [31] when a drift-ordering v ' vpi is adopted, Æv << 1

and the ion heat 
ux divided by ion density will be on the same order as the diamagnetic

drift velocity vpi. The end result is the \parallel" viscous stress tensor �$cj being modi�ed.

Thus an appropriate set of equations to describe the turbulence is given by a seven-�eld

model obtained by reduction of the Braginskii equations [3] in toroidal geometry based on

drift-wave ordering with sources and sinks added:
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Also, the auxiliary variables, $, �ci;e, the parallel electric �eld, and the parallel Amp�ere's

law are given by the following set of equations:

r2
?Ak = �(4�

c
)jk; (7)

Ek = �@k�� (
1

c
)
@Ak
@t

; (8)

$ = NiZier2
?�+NiZier?� � r? lnNi +r2

?Pi; (9)

�ci;e ' (Pk � P?)i;e

= �0i;e

�
(VE +VPi;e) � �� (2=

p
B)@k(

p
BVki;e)

�
: (10)

De�nitions of various quantities associated with plasma physics are as follows:

VE = cb0 �r?�=B;

VPi;e = cb0 �r?Pi;e=NiZi;eeB;

~B = rAk � b0;

�ii =
3

10
�ii�

2
i ;

�0i = 0:96Pi�i;

�0e = 0:73Pe�e; ;

!cj =
ZjeB

Mjc
;

VAj =
Bp

4�NjMj

:

Here rkF = B@k(F=B) for any F , @k = @0k +
~b � r; ~b = ~B=B; @0k = b0 � r; � = b0 � rb0.

The symbol tilde represents the 
uctuation quantities. Also, �ii; �k, and �
c
k are the classical

di�usion coeÆcients, and �ei is electron collision frequency. Except for parallel viscous

damping, magnetic pumping terms, and source and sink terms, similar equations are derived

by Zeiler et al. [32]. Parallel electron viscous damping is important as it smoothes the high-

kk oscillations near the X-point. The ion temperature equation is important for proper

determination of the 
uctuating electric �elds (because of the ion diamagnetic drift); also

it may introduce the �i-mode in the inner edge region [33, 34]. The last two terms in

Eq. (2) are the lowest-order nonlinear convection terms after the gyroviscous cancellation in

an expansion in inverse aspect ratio � = a=R.
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De�nitions of various quantities associated with neutrals are as follows:

�I = Nnh�viI;
�cx = Nnh�vicx;
Sp = Ni�I ;

Scx = Ni�cx;

WI ' 20eV:

Here �I is the ionization rate, �cx the charge exchange rate, WI the average energy loss per

ionization. The particle source term Sp arises from ionization of neutral gas and recombi-

nation and momentum source term Scx arises from charge exchange. The external source

terms are Sm for momentum, SE for energy. In the derivation, it neglects ion momentum

source/sink due to neutral.

B. Modi�ed \parallel" viscous stress tensor �$cj

As we show in Ref. [35], the \parallel" viscous stress tensor �$cj yields magnetic pumping

term, which is important because it damps shear in the plasma 
ow. The turbulence 
uc-

tuation levels and transport are in turn regulated by the shear 
ow, via the time-varying

E � B 
ow shear de-correlation. However, the magnetic pumping term makes a negligible

contribution to linear instability because it is on the order of �j smaller than other dominant

linear curvature drives, such as the rP term in Eq. (2).

Motivated by the observation for the importance of shear 
ow damping, the self-consistent

expression for the ion \parallel" viscous stress tensor, �$cj, is then carefully examined and is

re-derived by Simakov and Catto in the drift-ordering as follows: [31]

�cj = �0j

�
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B
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�
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� �0j

��
4�c

B3

�
b�r(pi + pe) �
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��
;

qki = ��kirkTi; �ki =
125pi
32Mi�i

:
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In particular, this expression for �$cj allows the neoclassical P�rsch-Schl�uter expression for

V PS
ki to be recovered. Comparison with Eq. (10) for a MHD ordering shows the di�erence

in last three-group terms.

C. Analytic neutrals model

Fueling at the edge of a tokamak is a complex process and requires the use of 
uid or Monte

Carlo codes for the best available modeling. However, for purposes of examining the role of

neutrals in pedestal density formation, it is reasonable to have an analytic neutrals model

that includes suÆcient physics to deal with the problem. One such model is a simple 
uid

neutral di�usion model where ion charge exchange (CX) gives rise to di�usion and ionization

to the loss of neutrals. Since neutrals do not follow �eld lines, a simple neutral di�usion

model can be setup from neutral continuity equation, with a radial coordinate r (for length

in this case) to the wall,

@

@r
�CXvth;n

@Nn

@r
= Nn�I : (12)

where CX gives rise to di�usion as �n ' �(Tn=Mn�cx)rNn and ionization to the loss

of neutrals. Here �I = Neh�ionvth;ei. This gives the well known results for the spatial

distribution of neutrals:

Nn = Nwf(�) exp

�
� r � rw
(�I�cx)1=2

�
: (13)

where Nw is the neutral density at the main chamber wall and rw is the position of the wall.

The electron ionization and ion charge exchange lengths are, respectively, �I = vth;n=�I ,

�cx = vth;n=�cx; vth;n =
p
Tn=Mn. Because the charge exchange collision frequency is often

the largest, the gas and ion temperature are typically assumed equal, i.e., Tn ' Ti. The

model provides analytic expressions for the edge Nn pro�le in slab geometry with the as-

sumption that the fueling is entirely from the plasma edge. A poloidally nonuniform source

of neutrals is speci�ed by f(�). This simple model also allows the neutral density to adjust

itself to plasma pro�le evolution via the electron ionization length �I and ion charge ex-

change length �cx. For a typical DIII-D L-mode plasma, the neutral density varies radially

less than 30% from the wall to a few centimeters inside the last closed 
ux surface.
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D. Transformation of the electron parallel momentum equation

Due to the time derivative in Ejj of Eq. (8) in Eq. (1) one needs to introduce a new variable

(canonical parallel momentum with an unity mass),

Ajjj = Vjje � (e=mec)Ajj; (14)

to cast the equation in the form solvable by the method of lines. The parallel derivative is

taken with respect to perturbed magnetic �eld

@jj = ~b � r = ~b0 � r+
~B

B
� r = @0jj +

rAjj �~b0
B

� r (15)

After combining time derivative and convection terms, the following equation

@Vke
@t

+ VE � rVke = � e

me
Ek; (16)

leads to

@

@t
(Vjje � e

mec
Ajj) + VE � r(Vjje � e

mec
Ajj) =

e

me
@jj�: (17)

Denoting Ajjj = Vjje � (e=mec)Ajj and the original equation (1) can be rewritten as

@Ajjj
@t

+ ~VE � rAjjj + Vjje~b0 � rVjje = e

me
@0jj��

1

Nime
(Te@jjNi + 1:71ne@jjTe) +

0:51�ei(Vjji � Vjje)� 1

Nime

2

3
B3=2@jj(B

�3=2(Pjje � P?e)) +
Smjje
Nime

� Scxs + Spe
Ni

Vjje (18)

Accordingly Eq. (7) becomes the Helmholtz equation for the Ajj

r2
?Ajj �

!pe
2

c2
Ajj =

4�

c
eNi(Ajjj � Vjji); (19)

So solving it from given Ajjj and Vjji one can �nd Ajj, and then �nds Vjje.

E. Simpli�cation of vorticity

Vorticity is de�ned as
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$ = Niqr2
?�+ qr?� � r?Ni +r2

?Pi (20)

Note that BOUT deals with perturbations of physical quantities, assuming that the zero

order (equilibrium) terms cancel out altogether. The terms involving r?�0 and r?Ni0 are

dropped due to the large gradient scale length of equilibrium pro�les. The nonlinear terms

are dropped by an argument that this nonlinearity is not important for small 
uctuations

(e.g. Ni=Ni0 � 1). Then what is left is

$ = Ni0qr2
?�+r2

?Pi (21)

Again, Ni0 can be put under r? by same argument, and therefore the equation solved is

r2
?

�
q�+

Pi
Ni0

�
=

$

Ni0
(22)

III. MAGNETIC GEOMETRY

A. Convention for magnetic �eld and its sign

In a axisymmetric toroidal system, the magnetic �eld can be expressed as

B = I( )r� +r� �r ; (23)

where  is the poloidal 
ux, � is the poloidal angle-like coordinate, and � is the toroidal angle.

Here, I( ) = RBt. The two important geometrical parameters are: the curvature, �, and the

local pitch, �( ; �) = I( )J =R2. The local pitch �( ; �) is related to the MHD safety q by

q̂( ) = 2��1
H
�( ; �)d� in the closed 
ux surface region, and q̂( ) = 2��1

R outboard
inboard

�( ; �)d�

in the scrape-o�-layer. Here J = (r � r� � r�)�1 is the coordinate Jacobian, R is the

major radius, and Z is the vertical position.

In our notation � is the geometric toroidal angle. Positive B� is in the � direction, i.e.

counter-clock-wise (looking from the top). For negative B� , which is considered the \normal"

case, the ion ~rB drift is down [36]. For the poloidal component, B�, the positive sign by

convention corresponds to the direction from the inner plate to the outer one.

13



B. The usual 
ux coordinates

For such an axisymmetric equilibrium the metric coeÆcients are only functions of  and �.

Two spatial di�erential operators appear in the equations given as following: rk and r2
?.

rk = b0 � r =
1

JB
@

@�
+

I

BR2

@

@�
=
Bp

hB

@

@�
+

Bt

RB

@

@�
; (24)

r2
?� = �r � [b� (b�r�)] = r2�� (r � b)(b � r�)�r2

k: (25)

If we use the usual 
ux coordinates ( , �, �) and study the mode with

�srk ' 0; �sr? ' 1;

since �����s Bp

hB

@

@�

���� '
�����s Bt

RB

@

@�

���� ' 1;

rk ' 0 depends on the di�erence of two large and almost equal number, and therefore it is

diÆcult to obtain accurate numerical solutions.

C. Field-aligned coordinates

In order to eÆciently simulate turbulence with short perpendicular wavelengths kk � k?,

we choose �eld-aligned coordinates[3, 37{39], (x, y, z), which are related to the usual 
ux

coordinates ( , �, �) by the relations

x =  �  s;

y = �;

z = � �
Z �

�0

�(x; y)dy: (26)

In the �eld-aligned coordinates, the parallel di�erential operator is simple, involving only

one coordinate y

@0k = b0 � rk =

�
Bp

hB

�
@

@y
= Jk @

@y
: (27)

which requires a few grid points. However, magnetic shear leads to strong deformation of

coordinate cells in the plane perpendicular to the �eld, and spatial discretization of radial

derivative has to be taken care with special methods [3, 37, 38]. To remedy this we introduce

a radial di�erence procedure in dual sets of coordinate systems. Even though the simulation
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FIG. 2: (a) A sketch of the �eld-aligned coordinates mapping from (�; �) to (y; z). The area covered

by the square ABCD is for the usual 
ux coordinates ( , �, �). The area covered by parallelogram

ABEF is for the �eld-aligned coordinates (x, y, z). The green area covered by the parallelogram

AB1E1F is a truncated simulation domain by the name of an annular toroidal wedge; (b) A sketch

of a annular toroidal wedge. The width of the wedge �� = 2�=�n, where �n � 1 is an integer.

data resides on the �eld-aligned coordinates, the radial di�erence will be computed in the

usual 
ux ( ; �; �) coordinates. Thus a high order interpolation scheme is needed to map data

back and forth between the �eld-aligned coordinates and the usual 
ux ( ; �; �) coordinates.

The derivatives are obtained from the chain rule as follows:

d

d 
=

@

@x
� I

@

@z
; (28)

d

d�
=

@

@y
� �(x; y)

@

@z
; (29)

d

d�
=

@

@z
; (30)

I =

�Z y

y0

@�(x; y)

@ 
dy

�
: (31)
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The coordinate Jacobian and metric coeÆcients are de�ned as following:

J = (r �r� � r�)�1 = h

Bp
; (32)

h =
q
Z2
� +R2

�; (33)

J11 = jrxj2 = R2

J 2
(Z2

� +R2
�); (34)

J12 = J21 = rx � ry = �R
2

J 2
(Z�Z +R R�); (35)

J22 = jryj2 = R2

J 2
(Z2

 +R2
 ); (36)

J33 =
1

R2
; (37)

Jk =
Bp

hB
: (38)

Here h is the local minor radius, and y0 is an arbitrary integration parameter. The disadvan-

tage of this choice of coordinates is that the Jacobian diverges near the X-point as Bp ! 0.

Therefore a better set of coordinates is needed for X-point divertor geometry.

D. Twist-shift boundary conditions

In the �eld-aligned coordinates the y coordinate is no longer periodic, but pseudo-periodic,

because it is the coordinate along the �eld line and it carries with it a toroidal displacement

in the binormal direction z. Therefore the twist-shift boundary conditions are applied in the

poloidal direction inside the separatrix and periodic boundary conditions are applied in the

binormal/toroidal direction:

f( ; � + 2�; �) = f( ; �; �) �! f

�
x; y + 2�; z �

I
�dy

�
= f(x; y; z); (39)

f( ; �; � + 2�) = f( ; �; �) �! f(x; y; z + 2�) = f(x; y; z): (40)

where the integral
H
�(x; y)dy represents a global shift by the periodicity constraint in the

�eld-aligning transformation. If the simulation domain is the entire 
ux surface (the paral-

lelogram ABEF in Fig. 2, 0 � y � 2�; 0 � z � 2�), the complete set of the Fourier modes

n and m are kept.
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E. Annular toroidal wedge

For eÆcient simulations of turbulence with the high toroidal mode number n (n � 1), in

best practice a truncated computational domain on the full torus down to a toroidal wedge

(the parallelogram AB1E1F ) is generally used, as shown in Fig. 2. To ensure the toroidal

periodicity, the full torus has to be divided into an integer �n equal parts (toroidal wedges)

and enforce periodicity on each of them. However, after one poloidal cycle along the �eld

line, the end of the �eld line is shifted by a global pitch �� � H
�( ; �)dy, in general it

may fall into a di�erent but an identical toroidal wedge, so the poloidal periodicity must

be enforced after each such cycle. The periodic boundary conditions in a annular toroidal

wedge then become:

f( ; �; � + 2�) = f( ; �; �) �! f(x; y; z + 2�=�n) = f(x; y; z); (41)

f( ; � + 2�; �) = f( ; �; �) �! f

�
x; y + 2�; z �

I
�dy

�
= f(x; y; z): (42)

where �n is a quantization constant, an integer. The consequence of the truncation of

the computational domain is that the complete set of the n-spectrum is thinned from n =

(0;�1;�2; � � �) to n = (0;�1�n;�2�n; � � �) in simulations of a annular toroidal wedge.

IV. SPATIAL NUMERICAL IMPLEMENTATIONS

A. Radial derivatives in �eld-aligned coordinates

According to the chain rule, the transformation of the radial derivative in �eld-aligned

coordinates is given in Eq. (28). Due to the magnetic shear, the coordinate cell deformation

occurs: a rectangle cell (� � ��) in the 
ux coordinate becomes elongated in �eld-aligned

coordinates �x� �z by a factor of I due to secular poloidal displacement of the two �eld

lines, as shown in Fig. 3. The best way to handle this is to use �nite Fourier transforms

which is exact up to machine accuracy. Applying Fourier transform in z leads to

d

d 
fkz(x; y) =

@

@x
fkz(x; y)� (ikzI)fkz(x; y); (43)

where I is de�ned in Eq. (31) and can be pre-computed from magnetic geometry. How-

ever a preferred method is to (1) shift the Fourier transformed variable by a phase factor

exp[�ikz
R y
y0
�( ; y)dy], and then (2) perform a �nite di�erence on the transformed variable
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fkz(x; y) exp[�ikz
R y
y0
�( ; y)dy] in the usual 
ux coordinates where there is no cell defor-

mation. Even though theoretically they are identical when � ! 0, this method has a

advantage for a consistency in numerical approximations to match the twist-shifted bound-

ary condition at the branch cut due to �nite radial grid spacing � as following:

Ikz � d

d 
exp

�
�ikz

Z y

y0

�( ; y)dy

�

'
exp[�ikz

R y
y0
�( +� ; y)dy]� exp[�ikz

R y
y0
�( ; y)dy]

� 
(44)

� !0�! �ikzI:

In other words, the variable �ikzI in Eq. (43) should be numerically pre-computed as one

complex variable Ikz de�ned as in Eq. (44), instead of as (�ikz) times I.

B. Inversion of the Laplacian operators

1. Inversion of potential vorticity

The vorticity equation is de�ned in Eq. (22). Using f � Zie� + Pi=Ni0 and the di�erential

operator given in the Appendix (A4), and applying Fourier transform in z leads to

(RB�)
2

�
@2fkz
@x2

+ 2Ikz @fkz
@x

+

�
I2kz � k2z

B2

(RB�)4

�
fkz

�
=
$k

N̂i0

(45)

Here Ikz is de�ned in Eq. (44). Solving the ordinary di�erential equation (ODE) using a

tridiagonal linear solver yields fkz(x; y), then inverse Fourier transform yields f(x; y; z) in

the �eld-aligned coordinates, from the latter Zie� = f(x; y; z) � Pi=Ni0. Note that in this

procedure the radial boundary conditions for Ni; Ti, and � become linked together.

2. Inversion of Ak

Similarly, the Helmholtz equation for Ak from Eq. (19) in Fourier space can be written as

(RB�)

�
@2Ajjkz
@x2

+ 2Ikz
@Ajjkz
@x

+

�
I2kz � k2z

B2

(RB�)4

�
Ajjkz �

!2pe
c2
Ajjkz

�

=
4�

c
Ni0Zie

�
Ajk � Vki

�
kz

(46)

The solution procedure is same as that for the vorticity.
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FIG. 3: A sketch of adjacent grid-points mapping from the �eld-aligned coordinates (xi�1; yj ; zk)!

(xi; yj ; zk) ! (xi+1; yj ; zk) to the usual 
ux surface coordinates ( i�1; �j; �) ! ( i; �j ; �k) !

( i+1; �j ; �k).

C. Numerical implementation of boundary conditions

1. Toroidal (z) boundary conditions

To ensure the toroidal periodicity, a full torus has to be divided into an integer �n equal

parts (toroidal wedges) and enforce periodicity on each of them.

F (x; yk; zk+N) = F (x; yk; zk); (47)

zk+N = zk + Lz = zk +Nz�z; (48)

where Lz is the toroidal length of the wedges, Nz is the number of nodal points, and �z is

the cell width.
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FIG. 4: The radial-poloidal plane is divided into three main regions: part of core (Edge), SOL,

private 
ux region and divertor plates.

2. Parallel (y) boundary conditions

The boundary conditions for � is the sheath boundary conditions in y in the SOL and the

private 
ux regions at the divertor plates, pseudo-periodic in y in \Edge" (the outer part of

the closed 
ux region inside of separatrix), as shown in Fig. 4.

� Twist-shift Edge boundary conditions

After one poloidal cycle along the �eld line, the end of the �eld line is shifted by

a global pitch
H
�( ; �)dy in the binormal direction z, in general it may fall into a

di�erent but an identical toroidal wedge, so the poloidal periodicity must be enforced

after each such cycle. A sketch of such procedures is pictorially shown in Fig. 5(a).

The pseudo-periodic boundary conditions in a annular toroidal wedge then become:

F (x; yk+N ; �zk+N) = F (x; yk; zk); (49)

�zk+N =

8<
: zk �

�H
�(x; y)dy

�
%Lz; zk >

�H
�(x; y)dy

�
%Lz;

zk �
�H
�(x; y)dy

�
%Lz + Lz; zk <

�H
�(x; y)dy

�
%Lz:

(50)

where the integral
H
�(x; y)dy represents a global shift by the periodicity constraint
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in the �eld-aligning transformation. The symbol % represents the modulus operator,

and the expression x%y produces the remainder when x is divided by y, and thus is

zero when y divides x exactly.

The consequence of these shifts is that there must be interpolation in zk to the fact

that the �eld-aligning transformation itself involves a shift and in general ẑk after the

shift does not fall exactly on a nodal point in zk. Therefore testing must be done to

show that to which order of interpolation it makes no di�erence in the turbulence. Of

course, �nite Fourier transforms are exact up to machine accuracy. Using Lagrange

interpolation scheme [40], we found that for a longest wavelength in z-direction, the 2-,

3-, 4-, and 5-points interpolation yield almost the same result, as shown in Fig. 5(b).

� Sheath boundary conditions

An electrostatic sheath will form at any plasma boundary and acts to �lter all but

the high energy electrons while attracting ions, controlling the particle and energy


ux leaving the plasma. Each ion-electron pair crossing the sheath convects to the

surface a quantity of energy which is conventionally described using a total sheath

heat transmission coeÆcient where [36] qse = 
ekTe�se with qse total heat 
ux at the

sheath edge, Te the temperature, �se � Nicse the sheath edge particle 
ux and where


e = 2:5
Ti
Te

+
2

1� Æe
� 0:5 ln

��
2�
me

Mi

��
1 +

Ti
Te

�
2

(1� Æe)2

�
(51)

with Æe the secondary electron emission coeÆcient and Ti the ion temperature. There-

fore in the SOL and private 
ux region, the divertor plate boundary conditions are

Vj = cse =

s
Ti + Te
Mj

(52)

jelk = Nie

�
cse � vTe

2
p
�
exp

�
�e�
Te

��
(53)

qse = ��ke@kTe = 
eNiTecse (54)

gsi = ��ki@kTi = 
iNiTicse (55)

@k$ = 0 (56)

@kNi = 0 (57)

where 
i ' 2:5 and 
e ' 7 are sheath energy transmission factors. Here we assume

that a magnetic �eld is in the normal direction to the divertor plates. There is no
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FIG. 5: (a) A sketch of poloidal periodic grid-points mapping from the �eld-aligned coordinates

(xi; yj + 2�; �zk) ! (xi; yj; zk) to the usual 
ux surface coordinates ( ; �j + 2�; �) ! ( i; �j ; �k),

where �zk = zk �
H
�( ; �)d�; (b)test results of twist-shifted periodic y-boundary using Lagrange

interpolation scheme.

boundary condition for density Ni and vorticity $. If a boundary condition has to

be imposed for numerical reasons, the zero parallel gradient is used at the sheath

entrance.
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V. SOLVING BOUT EQUATIONS WITH PVODE

The 
uid equations in Sec. II solved by BOUT can be cast in the most general form in terms

of a system of time-dependent ordinary di�erential equations (ODEs)

du

dt
= f(u;ru;r2u; � � �) (58)

where u is the vector of unknowns at a given mesh point, and f is typically called right-hand-

side function (rhs-f), which involves variables u at a mesh point, and spatial derivatives of

variables u which are computed using �nite di�erence. The rhs-f consequently depends upon

the mesh point, its close neighbors, and di�erence schemes used.

BOUT code presently uses the Newton-Krylov approach. This scheme is exempli�ed by the

BDF method (for Backward Di�erentiation Formula). For the BDF method, the advance-

ment of u from time level n� 1 to n takes the form

un = (�1un�1 + : : :+ �kun�k) + �t
0fn (59)

The BDF method is usually solved by a Newton iteration which expands fn at iteration j as

f(uj) � f(uj�1) +
@f

@u
(uj � uj�1): (60)

Equation (59) then is a linear equation for ujn which can be written as

(I=�t
0 � J)ujn = g (61)

where I is the identity matrix, J � @f=@u is the Jacobian evaluated with u from a previous

iteration or time step. Also, g is a vector which depends on values of u from the past

iteration, uj�1, and at previous time steps as obtained from Eqs. (59-60). Equation (61) is

usually solved by an iterative method to an accuracy somewhat better than the estimated

error in un�1 from the time advancement; this is known as an inexact Newton method.

We shall use a Krylov projection method to solve the linear system provided by a fully

implicit solver: PVODE.[41, 42] Although more work is required for such Newton methods

per iteration, they often have superior overall performance for sti� ODEs since larger time

steps can be used. We compared two methods of advancing the equations in time: one

is the Adams functional iteration (equivalent to predict-corrected method for a one-step

functional iteration) and the second is the inexact Newton method utilizing matrix-free
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Krylov projections as described. We found that the Newton-Krylov method is able to

expand its time step by a factor of 70 in linear stage compared to the functional-iteration

Adams method for the same accuracy [43]. However, it is only about six times more eÆcient

due to the extra work required to expand the large time step. In the nonlinear stage of the

simulation where di�erent wave modes are strongly coupled, the Newton method reduces its

time step by about 1/2 to satisfy the accuracy constraint. In fact, this simulation includes the

shear in the magnetic equilibrium near the X-point which was a problem that we could not

integrate successfully with the previous predictor-corrector method (a one-step functional

iteration). Thus, using the Newton-Krylov method has become an essential part of our

BOUT simulations.

Newton schemes that utilize a matrix-free Krylov projection method often require precon-

ditioning. [41, 42] The procedure requires the ability to solve related linear systems Pv = h

with a matrixP which approximates the original matrix, but is simpler to solve. By assump-

tion, P � (I=�t
0� J). Noting that P�1P = I, we may insert this product into Eq. (61) to

form the preconditioned system

[(I=�t
0 � J)P�1](Pujn) = g: (62)

The new variables are Pun, and this system is easier to solve by iterative methods such as

the Krylov method since [(I=�t
0 � J)P�1 � A � I is more diagonally dominant. The

Krylov method does require matrix-vector products of A(Pun), and these are done in a

matrix-free manner with a �nite-di�erence quotient approximation Jv.[41] However, we �nd

that the implicit BOUT works well without a preconditioner, which may be related to the

smaller time step required to resolve the turbulent 
uctuations.

VI. BOUT SOFTWARE DESIGN

To simulate boundary plasma turbulence and validate with the corresponding experiments,

the BOUT code uses realistic X-point magnetic and plasma pro�les. The background mag-

netic �eld structure is obtained from an MHD equilibrium code (usually EFIT [13]) for a

typical shot. The plasma pro�les are obtained by taking density and temperature as analytic

�ts (such as modi�ed tanh) to Thomson scattering data or calculated from the edge trans-

port code UEDGE [12]. For theoretical scaling studies with plasma current, the background
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magnetic �eld structure is obtained from another MHD equilibrium code, Corsica [14]. For

typical DIII-D boundary plasma pro�les in L-mode, the midplane values on the magnetic

separatrix are: Te = 60eV, Ti = 240eV, and ni = 6:5� 1018/m3. From the given magnetic

geometry and plasma pro�les corresponding to a speci�c experimental device and discharge,

the simulation is initialized with a set of small random 
uctuations. The fastest growing

modes dominate the initial phase of the calculation, in which the 
uctuations grow at an

approximately exponential rate. After this initial linear phase, the density and electrostatic

potential 
uctuations evolve to a saturated state with many modes. From the saturated

steady state, turbulence statistical properties can be extracted from the BOUT simulations

by using the correlation function analysis and validated with the various 
uctuation mea-

surements. [16, 17, 35, 44] The procedures of utilization of BOUT software suite is sketched

in Fig. 6. Here EFIT and Corsica are MHD equilibrium codes for initial magnetic geometry

setup for a whole device, UEDGE is an edge transport code for �ner grid generation at

the boundary region across the magnetic separatrix using spline and/or for plasma pro�les.

ELITE is a linear MHD stability code for peeling-ballooning modes [45] and BAL is a linear

stability code for drift-wave-type instabilities [15] and lately 2DX [46] for BOUT benchmark

studies, and GKV is a collection of IDL routines using the correlation function techniques

for data analysis. Data from BOUT simulations are saved and later analyzed with the GKV

and other BOUT data analysis IDL routines for post-processor to obtain 
uctuation spectra,

two-point correlation functions (including correlation times and lengths), bi-spectra, etc.

BOUT kernel code is a collection of subprograms that embodies physical or numerical func-

tionalities, which includes but not limits to the following: grid generation, data allocation,

initial conditions, boundary conditions, �eld-solve for vorticity and vector potential, rhs-f

evaluation, and parallelization, and interface between the BOUT data and PVODE data

(which advances a vector of variables u using the Newton-Krylov method). The complete

BOUT code description can be found in BOUT manual [47].

BOUT is parallelized via a poloidal domain decomposition model that uses the MPI (Mes-

sage Passage Interface) system [11]. The parallel implementation is straightforward and

eÆcient: one or several poloidal meshes with the entire radial-toroidal plane are stored on

each processor. At the end of a time step, the data in the domain boundary planes are passed

to its physically neighboring processor. Because of this parallel paradigm, the amount of

message passing scales linearly with the problem size. For a typical run with 64 processors,
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FIG. 6: BOUT software suite: a suite of the codes work together to make BOUT simulation results

similar to real experiments.

the communication time is less than 1% [43].

VII. BOUT SIMULATION RESULTS

BOUT is an electromagnetic 
uid edge turbulence code [3, 9]. The physics model is based on

the Braginskii equations for a collisional plasma, and the equations are solved numerically

in the real geometry of a divertor tokamak. BOUT model supports a large variety of plasma

modes: ideal and resistive ballooning and kink modes, drift, shear-Alfven, sheath-driven

modes and others.

With such a complex numerical model two questions naturally arise: (i) whether the equa-

tions form a valid physics model for the studied phenomena, and (ii) whether the equations

are solved correctly by the code. The answer to the �rst question is that for suÆciently

26



collisional plasma, which is reasonably well satis�ed in many existing tokamaks, the col-

lisional closure should hold and thus the model should be valid. To address the second

question one needs to do thorough veri�cation testing to make sure the numerical model can

be trusted as a research tool. Four test problems have been benchmarked for veri�cation

of the BOUT code [26]: (1) Shear Alfven wave; (2) Resistive drift instability; (3) Resis-

tive interchange instability; (4) Axisymmetric benchmark with UEDGE. A suite of codes

are under development to extend the veri�cation studies, and it is a step toward the cre-

ation of accepted veri�cation standards for edge turbulence codes. These include linearized

and nonlocal (e. g. separatrix-spanning) modes in axisymmetric (realistic divertor) toroidal

geometry. The suite consists of (i) an initial value approach using the BOUT 3D 
uid tur-

bulence code, here run with the nonlinear terms turned o�, and (ii) a new linear eigenvalue

code 2DX [46] for the boundary plasma.

In the following, two nonlinear BOUT simulation results are presented to demonstrate its

capabilities and functionalities.

A. Density e�ects on tokamak edge turbulence

A series of BOUT simulations has been conducted to investigate the physical processes

which limit the density in tokamak plasmas [48]. In this section, the plasma pro�les are

frozen, while they are evolved in section B. With poloidal 
ux,  , normalized to unity on

the separatrix, we typically take the inner simulation boundary condition to be  c = 0:9

and the outer boundary at  w = 1:1. The toroidal segment is typically one tenth of the

torus with full poloidal cross section. The boundary conditions for turbulence variables are

homogeneous Neumann at  = xc and at  = xw, sheath boundary conditions in y in the

SOL and the private 
ux regions at the divertor plates, twist-shifted periodic in y in the

closed 
ux region due to the choice of �eld-aligned coordinates, and periodic in z. However

for the electrostatic potential with the toroidal mode number n=0 component, the boundary

conditions are homogeneous Neumann at x = xc and Dirichlet at x = xw. The computational

mesh has 64 poloidal and 64 toroidal mesh points, and 50 radial points. The background

magnetic �eld structure is obtained from an MHD equilibrium code (e.g., EFIT [13]) for a

typical discharge. The plasma pro�les of density and electron temperature Te, are analytic

�ts (modi�ed tanh) to Thomson scattering data. For scaling studies with plasma density, the
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plasma pressure is held constant. For scaling studies with plasma current, the background

magnetic �eld structure is obtained from the MHD equilibrium code Corsica [14]. Since

there is no unstable edge localized mode (ELM) for our base case (L-mode), there is also no

ELM for the density scans. Furthermore, the current gradient driven modes are explicitly

turned o� in this paper to focus our e�orts on the density e�ects [35].

Simulations of turbulence in tokamak boundary plasmas show that turbulent 
uctuation

levels and transport increase with collisionality. As the edge density increases and the

temperature decreases, BOUT simulations show that the resistive X-point mode transitions

to the resistive ballooning mode, perpendicular turbulent transport approaches and �nally

dominates parallel classical transport, leading to substantially reduced contact with divertor

plates and the destruction of the E�B edge shear layer; the region of high transport then

extends inside the last closed magnetic 
ux surface. The full consequences of the large

radial transport were assessed by a set of 2D UEDGE transport simulations with increasing

outboard convective radial transport to mimic the BOUT results for increasing density.

These simulations show that this transport can lead to an X-point MARFE when a �xed-

fraction carbon impurity radiation is included [48]. BOUT further demonstrates that the

current scaling appears on a plot of discharge current versus density as an abrupt increase

in radial transport once ne=nG > 1. All of these results indicate that rapid edge cooling

due to large radial transport is a key physics element of the tokamak density limit. The

simulation results are qualitatively consistent with experimental observations from C-mod

and DIII-D [49, 50] and analytical analysis including perpendicular heat convection based

on the blob heat transport model [51].

These simulations are qualitatively consistent with previous theory and simulations given by

Rogers, Drake, and Zeiler (RDZ) [4], with the exception of the safety factor q-dependence

in their �d scaling. The three sets of simulations are extrapolated to compare with RDZ

theory and experiments, and to check whether a density limit boundary line is crossed, as the

arrows indicate in Fig. 7. In what follows, the word \agree" or disagree" is in a qualitative

sense, i.e., the same trend. (1). For �xed q, current Ip and pressure P , an increase in

density ne leads to a �xed � and a decrease in �d, �d /
p
�emfp / 1=

p
ne. In this case,

the density-limit boundary is crossed, and RDZ theory, BOUT simulations and experiments

agree. (2). For �xed q, temperatures Te; Ti and density ne, a decrease in current Ip leads to

an increase in � � 1=I2p and constant �d. In this case, the density limit boundary is crossed,
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FIG. 7: A sketch of edge plasma phase space from Rogers, Drake, and Zeiler theory [4].

and RDZ theory, BOUT simulations and experiments agree. (3). For �xed Ip, Te; Ti and ne,

an increase in toroidal magnetic �eld Bt leads to a �xed � and a decrease in �d � 1=q since

q / Bt. In this case, the RDZ theory predicts a density limit, but both experiments [52] and

BOUT �nd no transition for this case. The disagreement may be due to two important pieces

of physics omitted from RDZ theory that are kept in BOUT simulations: X-point physics
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and SOL open-magnetic-�eld-line physics. X-point physics limits the mode to the outside

midplane such that the parallel connection length qR is not a good measure of the parallel

mode width because of qa !1 near the magnetic separatrix in the divertor geometry. SOL

physics contributes signi�cantly to the formation of the Er well and our simulations show

that the onset of large radial transport is associated with the destruction of the Er well [48].

B. Blob dynamics and correlation analysis

For self-consistent turbulence and transport simulations with a neutral source added, as

described in Sec. II C, we �nd that as density rises due to neutral fueling, turbulent transport

increases. The same trend has been obtained with �xed plasma pro�les as discussed in

the previous section. The characteristics of the 
uctuations also change from small scale

turbulence to large density structures called blobs [53]. At high density during density

ramp-up simulations, we have identi�ed convective transport by localized plasma blobs in

the SOL [19, 20, 54]. Such strong intermittent edge transport has been simulated previously

in a 2D slab geometry [55].

An animation is given during density ramping, showing shear 
ow and blob dynamics (mpeg-

1 video). A simple 
uid neutral di�usion model is used where ion charge exchange (CX) gives

rise to di�usion and ionization to the loss of neutrals. The neutral density at wall is Nw =

1 � 1011cm�3 and exponentially decays into the plasma. A poloidally nonuniform source

of neutrals is speci�ed with a peak around the X-point to mimic 2D neutral calculations,

such as those in UEDGE. The detailed description of simulations is given in Ref. [58]. The

animation clearly demonstrates that the turbulence originates inside the separatrix due to

the steep density gradient. As density rises, the 
uctuating density increases, the large-scale

radial mode structure peels o� near the separatrix due to poloidal shear 
ow, and isolated

plasma blobs are therefore born. Plasma jets occasionally develop and remain connected to

hot core plasma inside the separatrix.

The important properties include: (1) Blob detachment from the separatrix: spatially local-

ized and non-di�usive transport of positive density 
uctuations radially outward, as shown

in Fig. 8(a). (2) Blob translation from dipole vorticity with the E � B drift calculated

from potential 
uctuations, as shown in Fig. 8(b). The self-consistent E-�eld of the blob is

predominantly a dipole �eld, increasingly as the blob moves away from the separatrix. The
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FIG. 8: (a) Blob detached from the separatrix, showing vorticity (contour lines) and density (color);

(b) history of blob vorticity at the wall, density (contour lines) and vorticity (color).

radial velocity shows a weak variation with blob radius, as expected from \disconnected"

blob models [19, 56]. (3) Blob rotation (monopole vorticity): observed to decay, probably

due to Te relaxation and/or sheath disconnection. (4) Cross correlation analysis indicates a

decorrelation of turbulence between the midplane and the divertor leg due to strong X-point
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correlation length; (b) correlation function for reference point at outer divertor leg.

magnetic shear [57]. Figure 9(a) shows that the cross-correlation has cuto�s near both the

lower X-point and the upper X-point regions for reference point at outer midplane, and the

cuto� is more pronounced for larger poloidal wavenumber, k�. Figure 9(b) shows that the

cross-correlation has cuto�s near the X-point regions for reference point at outer divertor
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leg. Figures 9(a) and 9(b) also show that the poloidal correlation length is about 1 cm, and

the parallel correlation length is about 20 meters.

The simulation results also show the density buildup around the separatrix in L-mode during

neutral fueling. The simulation data points with di�erent neutral density at the wall and

their �t to a \modi�ed tanh �t" formula [58] are plotted in Fig. 10. The main e�ect of

raising the neutral density (aside from raising the overall density) is to increase the density

in the far SOL relative to the top of the density pro�le. The density gradient scale length

parameters are obtained by �tting the modi�ed tanh�t function to the pro�les. There is a

general overall trend for formation of a \knee" at the base of the pro�le and for the minimum

density gradient scale length Wdata to decrease with increasing density as observed in the

experimental data [59]. However, the center position of the modi�ed tanh�t (\knee" at the

base of the pro�le) is moving toward the SOL and the modi�ed tanh�t is no longer the best

�t, due to the appearance of large blob structures as the density increases. The 
at density

pro�le in the SOL at high neutral density is a feature of convective transport by localized

plasma blobs. The detailed blob dynamics for the case of neutral density Nn = 1�1011cm�3

in Fig. 10 is shown in Fig. 8, in the animation, and is analyzed in Ref. [19]. It is also

found that the density gradient scale length at the separatrix Wsep is roughly constant with

increasing density.

VIII. SUMMARY AND CONCLUSIONS

It is shown in this paper that the application of a 
uid model is, in many cases, reasonable

in the boundary plasma of present fusion devices due to the low temperature and thus high

collisionality. A unique boundary turbulence code, BOUT, has been developed that spans

the separatrix, including three distinct regions: the outer part of the closed 
ux region

(Edge), the SOL, and the private 
ux region. The �eld-aligned coordinates and annular

toroidal wedge concept have been used for eÆcient simulations of the boundary turbulence.

The detailed spatial numerical implementation has been presented. The innovative implicit

Newton-Krylov iterative method is utilized via a fully implicit solver: PVODE. In order to

simulate real experiments, BOUT is designed to couple to the edge plasma transport code

UEDGE, and MHD equilibrium codes EFIT/Corsica to get the realistic X-point divertor

magnetic geometry and plasma pro�les. BOUT turbulence code suites o�er unique and
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FIG. 10: Background plasma density and its modi�ed tanh �t to the simulation pro�les after

�0:5�1ms evolution vs. neutral density at the outside midplane

leading-edge numerical and computational resources that enable physical understanding for

discovery, design and analysis.

We show that, in examples of BOUT simulation results, as density rises, the 
uctuations

change from resistive X-point mode to resistive ballooning mode dominated, and from small
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scale turbulence to large blobs. In the large blob regime at high density, the enhanced

radial transport as shown can lead to rapid edge cooling, which leads to a density limit.

The description given here is consistent with recent experiments on C-Mod [49, 50] and

analytical analysis including perpendicular heat convection based on the blob heat transport

model [51]. BOUT simulations show that X-point e�ects can isolate blobs in the main SOL

from divertor legs and also provide evidence of instability and 
uctuations in divertor legs

that is uncorrelated with activity in the main SOL. In summary, our results shed light on

the qualitative trend and scalings, and provide suggestions of possible experimental control

techniques.
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1. Di�erential operators

a. Derivative along unpertrubed magnetic �eld ~B0 � ~r

~B0 � ~rA = (~rz � ~rx) � (~ry@A
@y

) =
1

J

@A

@y
: (63)

b. Laplacian r2
?

r2A =
1

J

X
i

@

@xi

"
J(
X
j

@A

@xj
~rxj) � ~rxi

#
(64)

Neglecting @=@y terms, also dropping terms with �rst derivatives @A=@x and @A=@z that

are small compared to those with second derivatives,
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+
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c. Operator ~B � ~r� � ~rA

VE � ~rA =
c

B2
~B � ~r� � ~rA = c

�
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� @�

@x
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�
(67)

d. Operator
~~b � ~rG

~~b � ~rG = ~rAk � ~B � ~rG =
@Ajj
@x

@G

@z
� @Ajj

@z

@G

@x
(68)
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